An E2F1-Mediated DNA Damage Response Contributes to the Replication of Human Cytomegalovirus

نویسندگان

  • Xiaofei E
  • Mary T. Pickering
  • Michelle Debatis
  • Jonathan Castillo
  • Alexander Lagadinos
  • Shixia Wang
  • Shan Lu
  • Timothy F. Kowalik
چکیده

DNA damage resulting from intrinsic or extrinsic sources activates DNA damage responses (DDRs) centered on protein kinase signaling cascades. The usual consequences of inducing DDRs include the activation of cell cycle checkpoints together with repair of the damaged DNA or induction of apoptosis. Many DNA viruses elicit host DDRs during infection and some viruses require the DDR for efficient replication. However, the mechanism by which DDRs are activated by viral infection is poorly understood. Human cytomegalovirus (HCMV) infection induces a DDR centered on the activation of ataxia telangiectasia mutated (ATM) protein kinase. Here we show that HCMV replication is compromised in cells with inactivated or depleted ATM and that ATM is essential for the host DDR early during infection. Likewise, a downstream target of ATM phosphorylation, H2AX, also contributes to viral replication. The ATM-dependent DDR is detected as discrete, nuclear γH2AX foci early in infection and can be activated by IE proteins. By 24 hpi, γH2AX is observed primarily in HCMV DNA replication compartments. We identified a role for the E2F1 transcription factor in mediating this DDR and viral replication. E2F1, but not E2F2 or E2F3, promotes the accumulation of γH2AX during HCMV infection or IE protein expression. Moreover, E2F1 expression, but not the expression of E2F2 or E2F3, is required for efficient HCMV replication. These results reveal a novel role for E2F1 in mediating an ATM-dependent DDR that contributes to viral replication. Given that E2F activity is often deregulated by infection with DNA viruses, these observations raise the possibility that an E2F1-mediated mechanism of DDR activation may be conserved among DNA viruses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E2F1 Mediated Apoptosis Induced by the DNA Damage Response Is Blocked by EBV Nuclear Antigen 3C in Lymphoblastoid Cells

EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induce...

متن کامل

Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage.

E2F is a family of transcription factors that regulate the expression of genes involved in a wide range of cellular processes, including cell-cycle progression, DNA replication, DNA repair, differentiation, and apoptosis. E2F1, the founding member of the family, undergoes posttranslational modifications in response to DNA damage, resulting in E2F1 stabilization. In some cases, E2F1 is important...

متن کامل

Methylation-mediated regulation of E2F1 in DNA damage-induced cell death.

E2F1 promotes DNA damage-induced apoptosis and the post-translational modifications of E2F1 play an important role in the regulation of E2F1-mediated cell death. Here, we found that Set9 and LSD1 regulate E2F1-mediated apoptosis upon DNA damage. Set9 methylates E2F1 at lysine 185, a conserved residue in the DNA-binding domain of E2F family proteins. The methylation of E2F1 by Set9 leads to the ...

متن کامل

E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis.

The p53 tumor suppressor protein is phosphorylated and activated by several DNA damage-inducible kinases, such as ATM, and is a key effector of the DNA damage response by promoting cell cycle arrest or apoptosis. Deregulation of the Rb-E2F1 pathway also results in the activation of p53 and the promotion of apoptosis, and this contributes to the suppression of tumor development. Here, we describ...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011